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Abstract 

Background: The initial envelope (Env)-specific antibody response in acutely HIV-1-infected individuals and simian 
immunodeficiency virus (SIV)-infected rhesus monkeys (RMs) is dominated by non-neutralizing antibodies targeting 
Env gp41. In contrast, natural primate SIV hosts, such as African green monkeys (AGMs), develop a predominant Env 
gp120-specific antibody response to SIV infection. However, the fine-epitope specificity and function of SIV Env-
specific plasma IgG, and their potential role on autologous virus co-evolution in SIV-infected AGMs and RMs remain 
unclear.

Results: Unlike the dominant linear gp41-specific IgG responses in RMs, SIV-infected AGMs demonstrated a unique 
linear variable loop 2 (V2)-specific plasma IgG response that arose concurrently with high gp120-directed antibody-
dependent cellular cytotoxicity (ADCC) activity, and SIVsab-infected cell binding responses during acute infection. 
Moreover, SIV variants isolated from SIV-infected AGMs exhibited high amino acid mutation frequencies within the 
Env V1V2 loop compared to those of RMs. Notably, the linear V2-specific IgG epitope in AGMs overlaps with an analo-
gous region of the HIV V2 loop containing the K169 mutation epitope identified in breakthrough viruses from RV144 
vaccinees.

Conclusion: Vaccine-elicited Env V2-specific IgG responses have been proposed as an immune correlate of reduced 
risk in HIV-1/SIV acquisition in humans and RMs. Yet the pathways to elicit these potentially-protective V2-specific IgG 
responses remain unclear. In this study, we demonstrate that SIV-infected AGMs, which are the natural hosts of SIV, 
exhibited high plasma linear V2-specific IgG binding responses that arose concurrently with SIV Env gp120-directed 
ADCC-mediating, and SIV-infected cell plasma IgG binding responses during acute SIV infection, which were not 
present in acutely SIV-infected RMs. The linear V2-specific antibody response in AGMs targets an overlapping epitope 
of the proposed site of vaccine-induced immune pressure defined in the moderately protective RV144 HIV-1 vaccine 
trial. Identifying host factors that control the early elicitation of Env V2-specific IgG and ADCC antibody responses in 
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Background
The HIV-1 Env glycoprotein contains multiple vulnerable 
epitopes targeted by potent broad neutralizing antibodies 
(bNAbs) [1]. However, the elicitation of HIV gp120-spe-
cific bNAbs by current Env vaccination strategies is not 
yet feasible [2, 3]. Thus, HIV vaccine candidates currently 
in clinical testing focus on the elicitation of antibody spe-
cificities and functions identified as potential immune 
correlates of reduced infection risk in human and non-
human primate vaccine efficacy studies. Immune analy-
ses from the HVTN 505 phase IIb vaccine trial, which 
utilized an HIV Env gp140 protein boost immunogen and 
failed to show efficacy, demonstrated that the vaccine-
elicited humoral responses primarily targeted HIV Env 
gp41 without identifiable antiviral functions [4]. Simi-
larly, in the setting of HIV-1 infection, the initial antibody 
response against HIV Env is also dominated by Env gp41-
specific IgG responses that are ineffective at controlling 
viremia [5, 6]. Interestingly, in the moderately-efficacious 
RV144 HIV-1 Env vaccine efficacy trial, Env-specific IgG 
responses targeting the variable loop 1 and 2 (V1V2) were 
found to be associated with reduced HIV acquisition risk 
[7]. The following sieve analysis of the breakthrough virus 
variants localized the site of vaccine-induced immune 
pressure to two amino acid residue positions within V2 
loop [8–10]. Moreover, the V2 epitope that was associated 
with immune escape in RV144 vaccinees spans the region 
capable of engaging the gut-homing integrin recep-
tor α4β7, which has been implicated in the trafficking of 
immune cells to the gut associated lymphoid tissue, and 
the enhancement of cell-to-cell HIV transmission [11–
13]. Furthermore, the HIV Env V2-specific IgG responses 
in RV144 vaccinees mediated ADCC activity [14, 15]. 
Notably, V2-specific IgG responses were also associated 
with a reduced risk of SIVmac251 acquisition in RMs that 
received a similar vaccine regimen to that in the RV144 
HIV-1 trial [16]. While these types of V2-specific IgG 
responses are a major clinical endpoint of HIV vaccina-
tion, our understanding of factors that control the elicita-
tion of V2-specific IgG responses and ADCC function by 
existing vaccination strategies remains limited [3, 17].

Previous studies have investigated the proportion of 
SIV Env-specific IgG responses in the setting of infection 
in natural and non-natural SIV hosts. Antibody responses 
in acute SIV infection of RMs—a non-natural SIV host 
species and model of AIDS pathogenesis—predominantly 

target the SIV Env gp41 region [18–20]. Moreover, in 
SIV infected RMs, Env-specific IgG autologous virus 
neutralizing responses do not arise until approximately 
1 year post-infection [18]. In contrast, AGMs—which 
are thought to have co-evolved with SIV for at least 
30,000  years—sustain a non-pathogenic SIV infection, 
and do not exhibit a predominant gp41-specific IgG 
response over the course of infection [18, 19, 21]. SIV 
Env-specific IgG responses in chronically SIV-infected 
AGMs more frequently target gp120 epitopes com-
pared to SIV-infected RMs [20]. While previous stud-
ies reported that B cell depletion in SIV-infected AGMs 
has no appreciable effect in disease progression outcome 
[22], it has also been shown that SIV-associated B cell 
dysfunction is associated with pathogenic SIV infection, 
and not in non-pathogenic SIV infection in natural SIV 
hosts [19, 23]. Moreover, we previously demonstrated 
that SIV Env gp120-specific IgG monoclonal antibodies 
(mAbs) isolated from chronically SIV-infected AGMs 
mediated robust virus capture activity, and ADCC—an 
antibody function that has been associated with delayed 
progression to AIDS in RMs [20, 24]. Moreover, SIV Env 
gp120-specific mAbs in chronically SIV-infected AGMs 
exhibited higher binding levels against SIV-infected 
 CD4+ target cells compared to gp41-specific antibod-
ies [20]. In this study, we further explore the kinetics 
of ADCC and SIV-infected cell binding responses, the 
fine epitope-specificity of the early Env-specific IgG 
responses in AGMs and RMs, and their potential role in 
autologous virus evolution at key vulnerable Env sites. 
A deeper understanding of the fine-specificity, kinetics, 
and antiviral function of gp120-specific IgG responses in 
AGMs may help guide future HIV vaccination strategies 
aimed at eliciting potentially-protective Env-specific IgG 
responses in humans.

Results
Kinetics of SIV Env‑specific plasma IgG binding response 
in SIV‑infected AGMs and RMs
We previously showed that SIV-infected AGMs have a pre-
dominant gp120-specific antibody response compared to 
SIV-infected RMs [18]. In contrast, SIV-infected RMs have 
a more focused gp140-specific antibody response com-
pared to SIV-infected AGMs [18]. We set out to further 
investigate the early acute kinetics of the gp120-specific 
IgG responses in AGMs and RMs by examining plasma 

these natural SIV hosts could inform vaccination strategies aimed at rapidly inducing potentially-protective HIV-1 Env-
specific responses in humans.
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response, ADCC, Envelope, gp120, gp41
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IgG binding against the autologous SIVsab92018ivTF/
SIVmac251 Env gp120 proteins in both species. Prior to 
SIV infection, AGM and RM plasma IgG exhibited rela-
tively low binding against SIV Env proteins (Fig. 1). By 3 
wpi, AGMs had higher magnitude SIV Env-specific IgG 
binding responses to the autologous SIV gp120 compared 
to RMs  (logED50 median in AGMs vs. RMs: 3.0 vs. 2.3, 
FDR p = 0.032) (Fig. 1). By 15 weeks post-infection (wpi) 
and 1 year post-infection (1 ypi), there was no difference 
in plasma gp120-specific binding in SIVsab92018ivTF and 
SIVmac251-infected AGMs and RMs (Fig. 1).

Linear SIV Env peptide‑specific plasma IgG binding 
responses in SIV‑infected AGMs and RMs
To map the fine-epitope specificity of SIV Env-specific 
IgG responses in SIV-infected AGMs and RMs, we meas-
ured plasma IgG responses against a linear overlapping 
peptide library spanning the entire species-specific SIVs-
ab92018WT/SIVmac239 Env gp160 for each species. SIV 
Env linear peptide-specific plasma IgG binding responses 
were undetectable prior to infection (Fig.  2a). By 15 
wpi, both species demonstrated strong plasma antibody 
responses against peptides analogous to the HIV gp120-
gp41 fusion domain, gp41 immunodominant region, and 
the N-terminal region of gp41 cytoplasmic tail (Fig.  2a) 
[5]. Notably, by 15 wpi, RM plasma demonstrated high 
IgG binding against peptides of the variable loop 1 (V1) 
and variable loop 3 (V3) regions as well as binding to a 
large number of peptides within the gp41 subunit, includ-
ing those of the membrane-proximal external region 
(MPER), which remained high binding responses at 1 ypi 
(Fig. 2a). In addition to an appreciable linear V3-specific 
IgG response by 15 wpi (Fig. 2a), 3 of 6 AGMs (AGMs 90, 
93, 94) exhibited strong linear V2-specific IgG response 

that was markedly undetectable in all RMs (Fig. 2b). By 
1 ypi, all AGMs had a high plasma IgG binding response 
against the linear V2 epitopes, yet this response remained 
undetectable in RMs (Fig. 2b). To more closely examine 
the kinetics of V2-specific IgG response in AGMs, we 
assessed AGM plasma IgG binding to the overlapping 
peptide library spanning SIVsab Env gp160 at earlier 
time-points during acute SIV infection. No appreciable 
plasma IgG binding to linear V2 peptides was detected 
at 3 wpi (Fig.  2c). Interestingly, in 3 of 6 SIV-infected 
AGMs (AGMs 90, 93, 94) plasma IgG binding responses 
against 3 overlapping linear V2 peptides appeared by 6 
wpi (Fig. 2c).

Autologous and heterologous V1V2‑ and linear V2‑specific 
plasma IgG binding responses in SIV‑infected AGMs 
and RMs
Understanding the development of the predominant 
V2-specific IgG responses in AGMs is of interest, as it 
remains unclear how to elicit HIV V1V2-specific IgG 
responses that correlated with reduced HIV acquisition 
risk in the moderately protective RV144 vaccine trial 
[7–10]. To account for the few existing amino acid (AA) 
differences in the overlapping SIVsab92018WT and SIV-
mac239 V2 peptide libraries tested (peptides 40–42, and 
42–44, respectively) compared to the AGM and RM chal-
lenge viruses, we measured AGM and RM plasma IgG 
binding against linear peptides that cover the same V2 
region and directly match the AA sequence of the SIVsa-
b92018ivTF (SFAMAGYRRDVKKNYSTVWYDQE) and 
SIVmac251 (KFNMTGLKRDKTKEYNETWYSTD) chal-
lenge viruses. SIV-infected AGMs exhibited high plasma 
IgG binding against the linear V2 SIVsab92018ivTF 
peptide at 15 wpi (median binding OD, 1.35 [range, 
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0.34–2.54]) and 1 ypi (median binding OD, 2.76 [range, 
2.22–3.11]) (Fig. 3a), whereas RM plasma remained non-
reactive against the linear V2 SIVmac251 peptide (median 
binding OD, 0.04 [range, 0.02–0.11] at 1 ypi) (Fig. 3b).

To examine the cross-reactivity of the predominant V2- 
and V1V2-specific IgG responses in SIV-infected AGMs, 
we assessed binding responses to both autologous and 
heterologous SIVmac and HIV-1 linear V2 peptides and 
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V1V2 proteins. The V2-specific IgG response in AGMs 
was not cross-reactive with heterologous V2 linear SIV 
and HIV peptides or V1V2 proteins (Fig.  3c). However, 
SIV-infected AGM plasma demonstrated strong IgG 
binding to the autologous SIVsab Env V1V2 protein as 
early as 6 wpi (median binding OD, 2.3 [range, 0.6–2.6]) 
and this response increased in magnitude (median bind-
ing OD, 2.9 [range, 2.5–3.1]) by 15 wpi, and (median 
binding OD, 3.0 [range, 2.8–3.2]) by 1 ypi.

SIV Env mutation frequency of autologous circulating 
viruses isolated from plasma of SIV‑infected AGMs and RMs
To explore the potential role of the predominant gp120- 
and V1V2-specific IgG binding responses in AGMs and 
gp41-specific IgG responses in RMs on autologous viral 
evolution, we examined the Env gp160 AA sequence 

variability of single genome Env variants isolated from 
plasma of SIVsab92018ivTF-infected AGMs at 22 wpi 
and 1 ypi, and SIVmac251-infected RMs at 18 wpi and 
1 ypi. Plasma SIV Env variants from both species dem-
onstrated appreciable mutation frequency in the region 
of gp120 V4 loop at 1 ypi (Fig. 4a). Yet, the Env variants 
isolated from SIV-infected RMs exhibited high variability 
in Env gp41 region, compared to Env variants from SIV-
infected AGMs (Fig.  4a). By 1 ypi, Env variants in RMs 
also showed appreciable sequence variability in a region 
near the V3 and V5 loops (Fig.  4a). In contrast, plasma 
Env variants isolated from AGMs showed high sequence 
variability within C1 region that increased in frequency 
throughout infection compared to those of SIV-infected 
RMs (Fig. 4a). Moreover, plasma SIVsab Env variants in 
AGMs accumulated higher mutation frequencies within 
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V1 (mutation frequency mean in AGM vs. RM variants, 
5.4 vs. 0.22% at 22 or 18 wpi, and 6.7 vs. 3.5% at 1 ypi, 
respectively), and V2 loops (mutation frequency mean in 
AGM vs. RM variants, 1.8 vs. 0.086% at 22 or 18 wpi, and 
5.9 vs. 3.2% at 1 ypi, respectively) compared to RM Env 
variants over the course of infection (Fig.  4b). Particu-
larly, AGM plasma SIVsab Env variants exhibited high 
sequence variability at AA residue positions 127–137 
within the V1 loop, and 200–204 within the V2 loop at 

22 wpi and at 197–204 within the V2 loop at 1 ypi (SIV-
mac239 Env number sequence) (Fig. 4b). The high muta-
tion frequency regions within SIVsab92018ivTF V2 
are both near the epitope of the high magnitude linear 
V2-specific responses and within the vicinity of an analo-
gous region of the HIV V2 loop where the K169 mutation 
hotspot was identified in breakthrough viruses isolated 
from HIV RV144 vaccinees (Fig.  4b) [9]. This SIVsab 
V2 loop site of high sequence variability is also near the 
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analogous putative gut-homing receptor α4β7-binding 
motif identified in the HIV-1 Env (Fig. 4b) [11].

As N-linked glycans on Env can evolve in response 
to the autologous virus-specific IgG responses, we also 
assessed the N-linked glycosylation pattern in SIV plasma 
Env variants. AGM SIVsab Env plasma variants exhibited 
a relatively high loss of predicted N-linked GS motifs 
within the V2 variable region compared to RM SIVmac 
Env variants (percent of variants exhibiting a GS loss in 
AGMs vs. RMs: 35% at 22 wpi and 69% at 1 ypi vs. 0% at 
18 wpi and 16% at 1 ypi, respectively) at equivalent AA 
positions (SIVmac239 Env position 202) (Fig. 4b). SIVsab 
Env variants also showed a 7 and 31% loss of predicted 
GS motifs (SIVmac239 Env position 167) at 22 wpi and 1 
ypi, respectively, within the V1 loop. A loss in GS motifs 
within the corresponding V1 region was not observed in 
SIVmac Env variants (Fig. 4b). However, RM SIVmac Env 
variants isolated at 1 ypi had 30 and 16% loss of predicted 
GS motifs within the V5 loop that were not observed in 
AGM SIVsab Env variants from 1 ypi (SIVmac239 Env 
positions 476 and 479, respectively).

ADCC kinetics of plasma IgG responses in SIV‑infected 
AGMs and RMs
ADCC-mediating IgG responses and IgG targeting lin-
ear V2 epitopes were associated with a decreased risk 
of HIV-1 infection in the RV144 vaccine trial [25]. To 
explore the ADCC function of Env gp120-predominant 
antibody responses and their relationship to the early 
development of linear V2-specific IgG responses in 
AGMs, we evaluated the kinetics of plasma Env-specific 
ADCC responses in AGMs compared to those of RMs. 
ADCC activity was not detected in AGMs or RMs prior 
to SIV infection (Fig. 5a, b). As early as 6 wpi in AGMs 
and 5 wpi in RMs, high ADCC activity was detected 
against SIV Env gp140-coated cells in both species 
(ADCC titer as reciprocal plasma dilution median in 
AGMs vs. RMs: 52,225 [range, 36,931–90,286] vs. 61,826 
[range, 54,503–64,725], raw p = 0.71, FDR p = 0.95) 
(Fig.  5a). Gp140-specific IgG-mediated ADCC activity 
increased in both species by 15 wpi in AGMs and 17 wpi 
in RMs (ADCC titer median in AGMs vs. RMs: 89,851 
[range, 64,474–317,680] vs. 409,600 [range, 409,600–
409,600], raw p = 0.024, FDR p = 0.063) (Fig. 5a). Interest-
ingly, SIV-infected AGMs demonstrated high magnitude 
ADCC activity against SIV Env gp120-coated cells at 6 
wpi, and this response was remarkably undetectable in 
acutely SIV-infected RMs (ADCC titer median in AGMs: 
949.3 [range, 319–3746], raw p = 0.024, FDR p = 0.063) 
(Fig.  5b). Importantly, the more rapid development of 
gp120-specific ADCC-mediating response in AGMs 
arose concurrently with the gp120 and V2 loop-specific 
antibody responses in AGMs, which are distinct from 

that in SIV-infected RMs. Yet, both AGMs and RMs 
had comparable ADCC-mediating gp120-specific IgG 
responses by 15 or 17 wpi (ADCC titer median in AGMs 
vs. RMs: 11,169 [range, 4867–25,125] vs. 13,120 [range, 
6036–23,722], raw p = 0.90, FDR p = 1) (Fig. 5b).

Plasma IgG binding to SIV‑infected  CD4+ T cells
To examine the infected cell binding activity of the early 
acute SIV Env-specific IgG response in AGMs and RMs, 
we measured the binding of Env-specific IgG to  CD4+ 
T cells infected with SIVsab92018ivTF and SIVmac251 
infectious molecular clones (IMC). For all experiments, 
we obtained high levels of infection with > 55% (range, 
56–82% p24/p27+) of cells being infected for both 
viruses. Env-specific IgG plasma responses in AGMs 
recognized SIV-infected  CD4+ target cells more effec-
tively and earlier in acute time points compared to RM 
plasma (median % FITC positivity in AGMs vs. RMs, 
40.8% [range, 29.3–55.6%] vs. 1.0% [range, 0.1–1.1%] at 
week 6 or 5, raw p = 0.0095, FDR p = 0.057; 72.5% [range, 
58.6–78.3%] vs. 23.2% [range, 17.3–24.6%] at week 15 or 
17, raw p = 0.0095, FDR p = 0.057, respectively) (Fig. 5c).

Limited contribution of linear V2 epitopes to early ADCC 
and autologous SIV neutralizing responses in SIV‑infected 
AGMs
Given the early development of ADCC and neutralizing 
activity that arose concurrently with the linear V2-spe-
cific plasma IgG binding response in AGMs during acute 
SIV infection, we sought to define potential contribution 
of the linear V2-specific IgG response to early gp120-
directed functional responses that are unique to AGMs. 
With a SIVsab linear V2 peptide-coated IgG deple-
tion column of AGM plasma, we achieved an enriched 
76 ± 4.4% (mean and SD) depletion of linear V2-specific 
antibodies compared to 53 ± 8.4% (mean and SD) deple-
tion with a scrambled peptide-coated column. We then 
compared the gp120-specific ADCC and autologous 
neutralizing function of AGM V2 and scrambled pep-
tide-depleted plasma at 6 and 15 wpi, respectively [18]. 
Despite a reduction in ADCC activity compared to that 
of non-depleted plasma (median ADCC titers for non-
depleted vs. V2-depleted response, 949.3 [range, 318.8–
3746] vs. 314.4 [range, 100–576.3], raw p = 0.031, FDR 
p = 0.063; non-depleted vs. scrambled peptide-depleted 
response, 294.6 [range, 100–679.5], raw p = 0.031, FDR 
p = 0.063), we observed similar ADCC antibody titers 
in linear V2 peptide and scrambled peptide-depleted 
plasma at 6 wpi (raw p = 1, FDR p = 1) (Fig.  5d). Simi-
larly, we observed an equivalent decrease in plasma 
SIVsab neutralizing activity following the linear V2 and 
scrambled peptide-depletion of AGM plasma at 15 wpi 
(median  ID50 for non-depleted vs. V2-depleted activity, 
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1933 [range, 1007–2592] vs. 303 [range, 120–1340], 
raw p = 0.13, FDR p = 0.19; non-depleted vs. scrambled 
peptide-depleted activity, 367 [range, 35–1184], raw 
p = 0.063, FDR p = 0.11; scrambled peptide-depleted 

vs. V2-depleted activity, raw p = 1, FDR p = 1) (Fig.  5e). 
AGM and RM plasma IgG binding to scrambled peptide 
was negligible (median binding OD, 0.21 [range, 0.15–
0.25], and 0.08 [range, 0.04–0.12], respectively).
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Discussion
Vaccine-elicited V2-specific IgG responses that mediate 
ADCC activity have been proposed as an immune cor-
relate of reduced HIV-1 infection risk in the moderately 
protective RV144 vaccine efficacy trial [3, 17, 26]. How-
ever, factors controlling the elicitation of V2-specific 
IgG responses capable of mediating ADCC are not well 
established. We previously reported that natural SIV 
hosts, AGMs, have a SIV Env gp120-biased antibody 
response to SIV infection, and rapidly develop autolo-
gous neutralizing antibodies, which are unique from both 
SIV-infected RMs and HIV-infected human non-natural 
hosts [18–20]. In this study, we identified that the distinct 
plasma linear V2-specific IgG responses arose at 6 wpi 
in 50% of all AGMs, which were markedly undetectable 
in all RMs. Moreover, acutely SIV-infected AGMs medi-
ated a more rapid development of gp120-directed ADCC 
activity, and SIV-infected cell binding response compared 
to SIV-infected RMs. In addition, single genome Env 
variant analyses demonstrated an increase in AA muta-
tion frequency, and a high loss of predicted N-linked GS 
within the V1 and V2 loops of SIVsab Env variants over 
time. Interestingly, the target of linear V2-specific plasma 
IgG binding responses in AGMs localized to an equiva-
lent HIV V2 loop epitope near residues that were associ-
ated with immune escape from the potentially-protective 
V2-specific IgG responses in RV144 vaccinees [8, 9]. This 
SIVsab linear V2 epitope is also in close vicinity of the 
putative binding motif of the gut-homing receptor α4β7 
in HIV-1 Env, underlining the potential importance of 
the V2 loop region for virus infectivity and escape from 
humoral responses in the natural SIV hosts.

In this study, we found that SIV-infected AGMs exhib-
ited a predominant SIV Env gp120-directed response 
very early during acute SIV infection compared to the 
RM counterparts. To further examine the gp120/gp41 
antibody differential antibody responses in these species, 
we measured their SIV Env linear peptide-specific IgG 
binding responses against overlapping SIVsab92018WT 
and SIVmac239 peptide libraries spanning Env gp160, 
respectively. Interestingly, we observed higher binding 
responses against linear V2 peptides in AGMs but not 
in RMs. Given that a few AA differences occur in these 
overlapping peptide libraries compared to the SIVsa-
b92018ivTF and SIVmac251 challenge viruses, we also 
tested AGM and RM plasma IgG binding against lin-
ear V2 peptides matching the challenge viruses. AGMs 
showed higher magnitude linear V2-specific IgG bind-
ing against the linear V2 SIVsab92018ivTF peptide com-
pared to RM plasma binding to linear V2 SIVmac251 
peptide, suggesting that the observed binding differ-
ences against linear V2 peptides in AGMs and RMs are 
not due differences in the AA sequences between the SIV 

Env overlapping peptide library and the SIV challenge 
viruses. While the mechanism of the predominant, early 
plasma linear V2-specific IgG response in AGMs remains 
unclear, it is possible that AGMs mediate a higher fre-
quency of SIV linear-epitope specific responses given 
their lower frequency of SIV immune-complex trapping 
by follicular dendritic cells in germinal centers [27, 28].

We observed that V1 and V2 loops of SIVsab variants 
had higher mutation frequencies compared to SIVmac 
variants isolated from RMs. This high Env mutation fre-
quency in the V1V2 region has also been reported in 
SIVsab isolates from naturally SIV-infected AGMs [29, 
30]. Therefore, it is plausible that the early development 
of predominant gp120-specific and high magnitude 
V2-specific IgG responses in AGMs may influence the 
unique Env mutation pattern observed within the V1V2 
loop of autologous SIVsab circulating viruses [25, 31, 32]. 
It is also worth noting that the hypervariable loops of 
HIV-1 have long been suspected to influence conforma-
tional state changes in Env [33]. In addition, mutations 
within V1 or V2 loop could influence the conformation of 
nearby epitopes via glycan shielding [31, 32, 34, 35].

Comparisons in SIV and HIV Env-specific antibody 
responses are admittedly limited by a lack of SIV Env 
trimer crystal structures [32, 36–38]. The structure of a 
core SIV gp120 monomer has been determined and dif-
fered significantly in the orientation of its inner and outer 
domains compared to HIV gp120 monomers, suggest-
ing a differing functional SIV Env trimer arrangement 
([39]). Nevertheless, SIV V1V2 has been recognized to 
correspond to HIV-1 V1V2, and the SIV and HIV V2 
loops share certain structural motifs, specifically the [ED]
[VLI] motif and a lysine-rich motif that appears as K[KV]
QK in HIV and KK (alternately, K[KT]K) in SIV [29, 36, 
37, 40]. In fact, an RV144 vaccine regimen utilizing SIV 
gp120 as the immunogen elicited V2 loop-specific IgG 
responses that were associated with protection against 
SIVmac251 in RMs [16]. Furthermore, V2-specific anti-
body responses were inversely correlated with peak and 
set-point viral loads in SIV-infected RMs [41]. Thus, 
the V2 loop in HIV and SIV may share immunogenic 
and functional characteristics that are capable of elicit-
ing potentially-protective IgG responses in non-human 
primates.

Vaccine-elicited V2-specific IgG responses from the 
RV144 vaccine efficacy trial may have mediated pro-
tection through an ADCC mechanism [7, 9, 15]. In 
addition to the previously reported early kinetics of 
autologous virus neutralizing responses in AGMs [18], 
we observed an early SIV Env gp120-specific ADCC 
response in AGMs compared to RMs. Moreover, AGM 
plasma IgG showed higher SIV-infected cell binding 
activity compared to RM plasma, suggesting that AGM 
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SIV Env-specific IgG responses may better recognize 
epitopes exposed on infected cells. Similar functional 
immune profiles using AGM sera have been observed in 
previous studies of naturally SIV-infected AGMs [42, 43]. 
These results suggest that AGM SIV Env-reactive plasma 
IgG can mediate robust non-neutralizing antiviral func-
tions and increased infected cell binding activity during 
early acute SIV infection compared to RM plasma anti-
bodies. Intriguingly, we observed similar ADCC activ-
ity in V2 and scrambled peptide-depleted AGM plasma, 
suggesting that other sites within SIVsab gp120 may 
mediate the early acute ADCC responses. However, it 
should be noted that there was non-specific IgG deple-
tion in the scrambled peptide depletion experiments [44]. 
Furthermore, vaccine-elicited antibody responses in the 
RV144 efficacy trial were mapped to both conforma-
tional and linear V2 epitopes, suggesting that V2-specific 
IgG responses with anti-viral activity may not only tar-
get linear V2 epitopes [9, 14]. Interestingly, it has been 
shown that conformational epitope recognition of SIV 
Env-specific antibody responses differs greatly between 
nonpathogenic and pathogenic SIV infections in natural 
SIV hosts [23]. Thus, ADCC-mediating IgG responses in 
humans and AGMs may target both linear V2 and con-
formational gp120 epitopes within HIV and SIV Env.

Conclusion
We have demonstrated that acutely SIV-infected AGMs 
develop high magnitude plasma linear V2-specific IgG 
responses that arise concurrently with ADCC-mediating 
and SIV-infected cellular binding responses targeting 
gp120 epitopes. Yet, these early plasma linear V2-specific 
and gp120-specific IgG responses with ADCC activ-
ity were undetectable in RMs. Moreover, the antibody 
responses targeting either the linear V2 or other non-lin-
ear gp120 variable loop epitopes that are generated more 
quickly in AGMs than those in RMs could contribute to 
the observed faster accumulation of diversity of autolo-
gous circulating viruses within the V1V2 loop in SIV-
infected AGMs. Our findings support the potential use 
of AGMs as an alternative non-human primate model for 
HIV-1 vaccine development, particularly for the evalua-
tion of immunogens that target high magnitude neutral-
izing and non-neutralizing gp120-specific IgG responses. 
A greater understanding of host immune factors that lead 
to the unique functional gp120-specific IgG responses in 
these natural SIV hosts may provide valuable insights for 
future HIV vaccine immunogen design.

Methods
Nonhuman primates and sample collection
Six female AGMs (Chlorocebus sabaeus) and four female 
Indian RMs (Macaca mulatta) between four and 11 years 

of age were intravenously inoculated with, infectious 
molecular clones of SIVsab92018ivTF, or SIVmac251.30 
virus isolate, respectively [19, 20, 45]. All four RMs main-
tained high-level viremia compared to those of AGMs 
over the course of infection [18]. Blood was collected in 
EDTA tubes at 0, 2, 3, 5, 6, 15, 17, and 18 (RMs) or 22 
(AGMs) weeks post-infection (wpi), and again at 1  year 
post-infection (ypi) in both species, and plasma was then 
isolated. Animals were housed and maintained according 
to the Guide for the Care and Use of Laboratory Animals 
[46].

HIV/SIV Env protein and peptides
To assess the fine-specificity of SIV Env-specific plasma 
IgG binding responses in AGMs and RMs, we tested 
plasma samples for IgG binding to recombinant SIVsa-
b92018ivTF Env gp120, [47] SIVmac251 Env gp120, [47] 
HIV-1 murine leukemia virus (MuLV) gp70_His6/Mon 
(293F), gp70 V1V2 CaseA subtype B (293F), gp70 V1V2 
CaseA2 subtype B (169  K), and [48] SIVsab92018ivTF 
or SIVmac251 V1V2 proteins [18]. To examine Env lin-
ear peptide IgG binding responses, we used the SIVagm 
Sabaeus 92018 (Cat #10451), SIVmac239 (Cat #6883, 
AAA47637.1), and HIV-1 ConB (Cat #9480) Env peptide 
sets obtained through the NIH NIAID AIDS Reagent Pro-
gram, Division of AIDS in addition to SIVsab92018ivTF 
V2 peptide (SFAMAGYRRDVKKNYSTVWYDQE) and 
SIVmac251 V2 peptide (KFNMTGLKRDKTKEYNET-
WYSTD) (CPC Scientific, Sunnyvale, CA). SIVmac239 
Env peptide regions were annotated based on the HIV-2/
SIV protein annotations from HIV Sequence Compen-
dium 2016 [49]. To annotate the regions for SIVsab92018 
Env overlapping peptide, its sequence was aligned with 
SIVmac239 (M33262) using the HIVAlign tool (https://
www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.
html). An additional table file details the information of 
both SIVsab92018 and SIVmac239 Env overlapping pep-
tides for each Env region (see Additional file 1).

HIV/SIV Env‑specific IgG binding enzyme‑linked 
immunosorbent assays (ELISAs)
To assess SIV Env-specific plasma IgG binding kinetics, 
plasma samples from SIVsab92018ivTF-infected AGMs 
and SIVmac251-infected RMs were tested for IgG bind-
ing to recombinant SIVsab92018ivTF or SIVmac251 
Env gp120 proteins at the following time-points: 0, 3, 15 
wpi, and 1 ypi according to sample availability. To meas-
ure linear SIV Env peptide-specific plasma IgG binding 
responses, plasma samples from SIV-infected AGMs and 
RMs from 0, 3, 6, 15 wpi, and 1 ypi were tested for IgG 
binding to SIVsab92018WT and SIVmac239 overlapping 
linear peptide libraries, respectively. To confirm simi-
lar IgG responses to the autologous linear V2 peptides, 

https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
https://www.hiv.lanl.gov/content/sequence/VIRALIGN/viralign.html
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plasma samples from SIV-infected AGMs and RMs at 5, 
15 wpi, and 1 ypi were tested against SIVsab92018ivTF 
and SIVmac251 linear V2 peptides, respectively. To 
examine the magnitude and cross-reactivity of the heter-
ologous linear V2 and V1V2 protein-specific plasma IgG 
binding, plasma samples from SIV-infected AGMs at 6, 
15 wpi, and 1 ypi were serially diluted from a 1:100 start-
ing dilution and tested against SIVmac239 and HIV-1 
Consensus Subtype B (ConB) overlapping linear V2 
peptides, and SIVsab92018ivTF, SIVmac251, and HIV-1 
V1V2 proteins. The SIV Env/peptide-specific IgG binding 
ELISAs were carried out with Env proteins or peptides 
diluted to 3 μg/mL in 0.1  M sodium bicarbonate, and 
coated on plates for 1 h. Plasma samples were diluted at 
1:100. Plates were washed and blocked with SuperBlock 
(4% whey protein, 15% goat serum, and 0.5% Tween 20 
diluted in 1X phosphate-buffered saline (PBS)) at room 
temperature for 1  h. Plasma from chronically SIV-
infected AGMs and RMs were used as positive controls. 
Influenza hemagglutinin-specific mAb CH65 [50] and 
an anti-respiratory syncytial virus antibody, Pavilizumab 
(Medimmune, Inc, Quakertown, PA), were used as nega-
tive controls. Scrambled peptides and species-specific 
SIV Env gp140 proteins were used as additional nega-
tive and positive controls, respectively. Horseradish per-
oxidase (HRP)-conjugated polyclonal goat anti-monkey 
IgG (gamma chain) antibody (Rockland Immunochemi-
cals, Gilbertsville, PA) was added and incubated for 1 h 
at 1:10,000 dilution. Plates were washed and developed 
with SureBlue reserve TMB substrate for 5 min, and the 
reaction was stopped by adding an equal volume of TMB 
stop solution (KPL, Gaithersburg, MD). Optical densi-
ties (ODs) were measured at 450 nm using a Spectramax 
Plus spectrophotometer (Molecular Devices, Sunnyvale, 
CA). A line of best fit calculated by a 4-parameter logistic 
curve was used to interpolate the log half-maximal effec-
tive plasma dilution (log  ED50) using GraphPad Prism 7 
(Graph Pad, La Jolla, CA).

Peptide depletion and SIV neutralization assays
To deplete linear V2-specific IgG responses, CNBr-
activated Sepharose 4B columns (GE Healthcare, Pitts-
burgh, PA) were coated with 2 mg of SIVsab92018WT V2 
peptide (SFAMAGYRRDVKKNYSTVWDDQE) (CPC 
Scientific, Sunnyvale, CA), and a scrambled peptide of 
similar length according to manufacturer’s guidelines. 
AGM plasma samples were run through the columns, 
and the flow-through was run for a total of 10 times. 
Depletion efficiency of linear V2 peptide-specific anti-
bodies was quantified as the percent depletion, which 
equals 1- ((OD of peptide-depleted V2 binding/OD of 
non-depleted V2 binding) * 100). Non-depleted, linear 
V2 peptide-depleted, and scrambled peptide-depleted 

plasma samples from SIVsab92018ivTF-infected AGMs 
at 15 wpi were tested against SIVsab92018ivTF infectious 
molecular clone (IMC) in the TZM-bl cell neutralization 
assay [18]. In brief, samples were serially diluted in dupli-
cate, and incubated with virus (50,000 relative light unit 
[RLU] equivalents) for 1 h at 37 °C. Cells were added at 
a density of 10,000 cells per well, and incubated for 48 h 
at 37 °C + 5%  CO2. A reduction in luciferase activity was 
quantified by the Brightglow Luciferase detection system 
(Promega, Madison, WI). The sample dilution at which 
a 50% RLU reduction was observed was defined as the 
inhibitory dilution  (ID50).

ADCC assay
We used the GranToxiLux (GTL) ADCC assay to measure 
the ADCC activity of whole plasma samples, linear V2 
peptide-depleted plasma IgG, and/or scrambled peptide-
depleted plasma IgG isolated from SIVsab92018ivTF-
infected AGMs and SIVmac251-infected RMs at 0, 6 
(AGMs) or 5 (RMs), and 15 (AGMs) or 17 (RMs) wpi as 
described previously [51]. The CEM.NKRCCR5 target cells 
[52] were coated with recombinant SIVsab92018ivTF/
SIVmac251 gp120, or avi-tagged gp140 Env representing 
the same virus isolates. Cryopreserved human periph-
eral blood mononuclear cells from an HIV-seronegative 
donor with the 158F/F polymorphic variant of Fcγ recep-
tor 3A served as effector cells [53]. Plasma samples were 
tested using 4-fold serial dilutions starting at 1:100 dilu-
tion. Data were analyzed using FlowJo 9.8.2 (Tree Star 
Inc., Ashland, OR). The % Granzyme B (GzB) activity was 
defined as the percentage of cells positive for proteolyti-
cally active GzB out of the total viable target cell popu-
lation. Final results were calculated after subtracting the 
background % GzB activity observed in wells containing 
effector and target cells in the absence of plasma or IgG 
samples. Plasma ADCC antibody titers were determined 
by interpolating the plasma dilutions that intersect the 
positive cut-off (8% GzB activity) using Graph Pad Prism 
7 (Graph Pad, La Jolla CA).

Plasma IgG binding to Env on the surface of SIV‑infected 
 CD4+ cells
Indirect surface staining was used to evaluate the abil-
ity of SIV Env-specific plasma IgG from AGMs and RMs 
to bind the surface of CEM.NKRCCR5  CD4+ T cells [54] 
infected with SIVsab92018ivTF or SIVmac251. Infec-
tions with replication competent infectious molecular 
clone virus (IMC) were performed using DEAE-Dextran 
as described previously [51, 55]. At 48 h postinfection, 
the infected CEM.NKRCCR5  cells were incubated with a 
1:100 dilution of plasma for 2 h at 37 °C and then stained 
with a vital dye (Live/Dead Fixable Aqua Dead Cell Stain; 
Invitrogen) to exclude nonviable cells from subsequent 
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analyses. Primary Ab binding was detected by second-
ary labeling with fluorescein isothiocyanate (FITC)-
conjugated goat anti-rhesus IgG (SouthernBiotech Inc., 
Birmingham, AL), and SIV-infected cells were identified 
by staining for intracellular expression of p24/27 (KC57-
RD1; Beckman Coulter) using standard methods. Bind-
ing was quantified as % of live, p24/27 positive, FITC 
positive cells after subtracting the background binding of 
week 0 samples. Mock-infected cells were used to estab-
lish negative gates.

Single genome amplification (SGA) and sequencing 
of plasma SIV env variants
SIV env variants from SIVsab92018ivTF-infected AGM 
plasma samples at 22 and 52 wpi (n = 4, 71 variants, and 
n = 3, 39 variants, respectively), [56] and SIVmac251-
infected RM plasma samples at 18 and 50 wpi (n = 4, 107 
variants; and n = 3, 67 variants, respectively) were ampli-
fied and sequenced using limiting dilution PCR [56]. For 
this study, SGAs isolated from AGMs and RMs were 
aligned against sequences of the corresponding wild-type 
SIVsab92018 and SIVmac251 using Seaview [57]. For 
SIVsab92018WT Env sequence (871 amino acid (AA)), 
the regions include constant region 1 (C1) (54 AA), V1 
(42 AA), V2 (45 AA), and gp41 (345 AA). For SIVmac251 
Env sequence (876 AA), the regions include C1 (49 AA), 
V1 (58 AA), V2 (43 AA), and gp41 (348 AA). Mutation 
frequency of Env variants at each time-point was calcu-
lated as the percent of variants with different AA com-
pared to respective SIVsab/mac virus Env sequence at 
each residue within a defined Env region. Mutations in 
Env variants were graphically represented in relation-
ship to their respective challenge Env using Highlighter 
tool (https://www.hiv.lanl.gov/content/sequence/HIGH-
LIGHT/highlighter_top.html). Analysis of N-linked 
glycosylation sites (GS) (Nx[ST] pattern) of plasma Env 
variants were performed using N-GlycoSite tool (https://
www.hiv.lanl.gov/content/sequence/GLYCOSITE/gly-
cosite.html).

Statistical analysis
Wilcoxon-Mann–Whitney was used to compare the 
Env protein-specific plasma IgG binding  logEC50 values 
between AGMs and RMs (Fig.  1). The exact Wilcoxon 
Rank Sum test was used to compare the gp140 and gp120 
ADCC titers in AGMs and RMs (Fig.  5a, b), and the % 
infected cells in AGMs and RMs (Fig. 5c). The Wilcoxon 
Signed-Rank test to compare the non-depleted and V2/
scrambled peptide depleted ADCC activity (Fig. 5d), and 
neutralizing activity (Fig. 5e). All analyses were adjusted 
for multiple comparisons by false discovery rate (FDR) p 
value correction.
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